Разница между понятиями киловатт и киловатт-час
Ватт - мощность при кот. за 1 сек. раб. в 1 Дж. - 1 Дж/с - ...
Из-за схожих названий, киловатт и киловатт-час часто путают в повседневном употреблении, особенно когда это относится к электроприборам. Однако эти две единицы измерения относятся к разным физическим величинам. В ваттах и, следовательно, киловаттах измеряется мощность, то есть количество энергии, потребляемое прибором за единицу времени. Ватт-час и киловатт-час являются единицами измерения энергии, то есть ими определяется не характеристика прибора, а количество работы, выполненной этим прибором.
Эти две величины связаны следующим образом. Если лампочка мощностью в 100 Вт работала на протяжении 1 часа, её работа потребовала 100 Вт·ч энергии, или 0,1 кВт·ч. 40-ваттная лампочка потребит такое же количество энергии за 2,5 часа. Мощность электростанции измеряется в мегаваттах, но количество проданной электроэнергии будет измеряться в киловатт-часах (мегаватт-часах).
Мировыми лидерами в производстве ядерной электроэнергии являются:
США (836,63 млрд кВт·ч/год),
Франция (439,73 млрд кВт·ч/год),
Япония (263,83 млрд кВт·ч/год),
Россия (160,04 млрд кВт·ч/год),
Корея (142,94 млрд кВт·ч/год)
Германия (140,53 млрд кВт·ч/год).
В мире действует 441 энергетический ядерный реактор общей мощностью 374,692 ГВт[1], российская компания «ТВЭЛ» поставляет топливо для 76 из них (17 % мирового рынка)[2].
Крупнейшая АЭС в Европе — Запорожская АЭС - 6 энергоблоков суммарной мощностью 6 ГВт.
Крупнейшая АЭС в мире – Япония – 7 энергоблоков суммарной мощностью 8,212 ГВт.
Использование энергии ветра растет примерно на 30 процентов в год, по всему миру с установленной мощностью 121000 мегаватт (МВт) в 2008 году, и широко используется в странах Европы и США.
Ежегодное производство в фотоэлектрической промышленности достигло 6900 МВт в 2008 году. Солнечные электростанции популярны в Германии и Испании. Солнечные тепловые станции действуют в США и Испании, а крупнейшей из них является станция в пустыне Мохаве мощностью 354 МВт.
Крупнейшей в мире геотермальной установки установка на гейзерах в Калифорнии, с номинальной мощностью 750 МВт. Бразилия проводит одну из крупнейших программ использования возобновляемых источников энергии в мире, связанную с производством топливного этанола из сахарного тростника. Этиловый спирт в настоящее время покрывает 18 процентов потребности страны в автомобильном топливе. Топливный этанол также широко распространен в США.
Эта отрасль энергетики, специализируется на использовании энергии Солнца — электромагнитных волн, которые излучаются Солнцем по причине протекания в нём термоядерной реакции. Это излучение достигает атмосферы Земли и преобразуется в кинетическую энергию движения газа в атмосфере. Ветроэнергетика является бурно развивающейся отраслью, так в конце 2008 года общая установленная мощность всех ветрогенераторов составила 120 гигаватт, увеличившись вшестеро с 2000 года.
Мощность ветрогенератора зависит от площади, заметаемой лопастями генератора. Например, турбины мощностью 3 МВт (V90) производства датской фирмы Vestas имеют общую высоту 115 метров, высоту башни 70 метров и диаметр лопастей 90 метров.
Наиболее перспективными местами для производства энергии из ветра считаются прибрежные зоны. В море, на расстоянии 10—12 км от берега (а иногда и дальше), строятся офшорные ветряные электростанции. Башни ветрогенераторов устанавливают на фундаменты из свай, забитых на глубину до 30 метров.
Ветряные генераторы практически не потребляют ископаемого топлива. Работа ветрогенератора мощностью 1 МВт за 20 лет эксплуатации позволяет сэкономить примерно 29 тыс. тонн угля или 92 тыс. баррелей нефти.
На этих электростанциях, в качестве источника энергии используется потенциальная энергия водного потока, первоисточником которой является Солнце, испаряющее воду, которая затем выпадает на возвышенностях в виде осадков и стекает вниз, формируя реки. Гидроэлектростанции обычно строят на реках, сооружая плотины и водохранилища. Также возможно использование кинетической энергии водного потока на так называемых свободнопоточных (бесплотинных) ГЭС.
Особенности:
Себестоимость электроэнергии на ГЭС существенно ниже, чем на всех иных видах электростанций
Генераторы ГЭС можно достаточно быстро включать и выключать в зависимости от потребления энергии
Возобновляемый источник энергии
Значительно меньшее воздействие на воздушную среду, чем другими видами электростанций
Строительство ГЭС обычно более капиталоёмкое
Часто эффективные ГЭС более удалены от потребителей
Водохранилища часто занимают значительные территории
Плотины зачастую изменяют характер рыбного хозяйства, поскольку перекрывают путь к нерестилищам проходным рыбам, однако часто благоприятствуют увеличению запасов рыбы в самом водохранилище и осуществлению рыбоводства.
На 2005 год гидроэнергетика обеспечивает производство до 63 % возобновимой и до 19 % всей электроэнергии в мире, установленная гидроэнергетическая мощность достигает 715 ГВт. Лидерами по выработке гидроэнергии на гражданина являются Норвегия, Исландия и Канада. Наиболее активное гидростроительство на начало 2000-х ведёт Китай, для которого гидроэнергия является основным потенциальным источником энергии, в этой же стране размещено до половины малых гидроэлектростанций мира.
Установленная мощность геотермальных электростанций в мире на начало 1990-х составляла около 5 тысяч МВт, на начало 2000-х — около 6 тысяч МВт. В конце 2008 года суммарная мощность геотермальных электростанций во всём мире выросла до 10,5 тысяч МВт.
Крупнейшим производителем геотермальной электроэнергии являются США, которые в 2005 году произвели около 16 млрд кВт·ч возобновимой электроэнергии. В 2009 году суммарные мощности 77 геотермальных электростанций в США составляли 3086 МВт. До 2013 года планируется строительство более 4400 МВт.
Основные промышленные зоны: «гейзеры» — в 100 км к северу от Сан-Франциско (1360 МВт установленной мощности), и северная часть Солёного моря в центральной Калифорнии (570 МВт установленной мощности), в Неваде установленная мощность станций достигает 235 МВт.
Геотермальная электроэнергетика, как один из альтернативных источников энергии в стране, имеет особую правительственную поддержку.
На 2003 год 1930 МВт электрической мощности установлено на Филиппинских островах, в Филиппинах парогидротермы обеспечивают производство около 27% всей электроэнергии в стране.
Страна на 2003 год находилась на третьем месте по выработке геотермальной энергии в мире, с установленной мощностью электростанций в 953 МВт. На важнейшей геотермальной зоне Серро Прието расположились станции общей мощностью в 750 МВт.
В Италии на 2003 год действовали энергоустановки общей мощностью в 790 МВт.
В Исландии действуют пять теплофикационных геотермальных электростанций общей электрической мощностью 570 МВт (2008), которые производят 25 % всей электроэнергии в стране.
В Кении на 2005 год действовали три геотермальные электростанции общей электрической мощностью в 160 МВт., существуют планы по росту мощностей до 576 МВт.
Один из крупнейших производителей геотермальной энергии в мире. Сотрудничает по этому вопросу с США. По некоторым данным геотермальная энергия обеспечивает электричеством около 500 тыс. жителей страны.
Все российские геотермальные электростанции расположены на Камчатке и Курилах, суммарный электропотенциал пароводных терм одной Камчатки оценивается в 1 ГВт рабочей электрической мощности. Российский потенциал реализован только в размере не многим более 80 МВт установленной мощности (2009) и около 450 млн. кВт·ч годовой выработки (2009):
Мутновское месторождение:
Верхне-Мутновская ГеоЭС установленной мощностью 12 МВт·э (2011) и выработкой 69,5 млн кВт·ч/год (2010) (81,4 в 2004),
Мутновская ГеоЭС установленной мощностью 50 МВт·э (2011) и выработкой 360,5 млн кВт·ч/год (2010) (на 2006 год ведётся строительство, увеличивающее мощность до 80 МВт·э и выработку до 577 млн кВт·ч)
Паужетское месторождение возле вулканов Кошелева и Камбального — Паужетская ГеоТЭС мощностью 14,5 МВт·э (2011) и выработкой 43,1 млн кВт·ч (на 2010 год проводится реконструкция с увеличением мощности до 18 МВт·э).
Месторождение на острове Итуруп (Курилы): Океанская ГеоТЭС установленой мощностью 2,5 МВт·э (2009). Существует проект мощностью 34,5 МВт и годовой выработкой 107 млн кВт·ч.
Кунаширское месторождение (Курилы): Менделеевская ГеоТЭС мощностью 3,6 МВт·э (2009).
В Ставропольском крае на Каясулинском месторождении начато и приостановлено строительство дорогостоящей опытной Ставропольской ГеоТЭС мощностью 3 МВт.
Поток солнечного излучения, проходящий через площадку в 1 м², расположенную перпендикулярно потоку излучения на расстоянии одной астрономической единицы от центра Солнца (на входе в атмосферу Земли), равен 1367 Вт/м² (солнечная постоянная). Из-за поглощения, при прохождении атмосферной массы Земли, максимальный поток солнечного излучения на уровне моря (на Экваторе) — 1020 Вт/м². Однако следует учесть, что среднесуточное значение потока солнечного излучения через единичную горизонтальную площадку как минимум в три раза меньше (из-за смены дня и ночи и изменения угла солнца над горизонтом). Зимой в умеренных широтах это значение в два раза меньше.
Зависимость от погоды и времени суток.
Необходимость аккумуляции энергии.
Высокая стоимость конструкции.
Необходимость периодической очистки отражающей поверхности.
Нагрев атмосферы над электростанцией.
Из-за теоретических ограничений в преобразовании спектра в полезную энергию (около 30 %) для фотоэлементов первого и второго поколения требуется использование больших площадей земли под электростанции. Например, для электростанции мощностью 1 ГВт это может быть несколько десятков квадратных километров (для сравнения, — гидроэнергетика, при таких же мощностях, выводит из пользования заметно большие участки земли), но строительство солнечных электростанций такой мощности может привести к изменению микроклимата в прилегающей местности и поэтому в основном устанавливаются фотоэлектрические станции мощностью 1 — 2 МВт недалеко от потребителя или даже индивидуальные и мобильные установки.
Фотоэлектрические преобразователи работают днём и с меньшей эффективностью работают в утренних и вечерних сумерках. При этом пик электропотребления приходится именно на вечерние часы. Кроме того, производимая ими электроэнергия может резко и неожиданно колебаться из-за смены погоды. Для преодоления этих недостатков на солнечных электростанциях используются эффективные электрические аккумуляторы (на сегодняшний день это не достаточно решённая проблема), либо преобразуют в другие виды энергии, например, строят гидроаккумулирующие станции, которые занимают большую территорию, или концепцию водородной энергетики, которая недостаточно экономически эффективна. На сегодняшний день эта проблема просто решается созданием единых энергетических систем, которые перераспределяют вырабатываемую и потребляемую мощность.
Сравнительно высокая цена солнечных фотоэлементов. С развитием технологии и ростом цен на ископаемые энергоносители этот недостаток преодолевается. В 1990—2005 гг. цены на фотоэлементы снижались в среднем на 4 % в год.
Поверхность фотопанелей и зеркал (для тепломашинных ЭС) нужно очищать от пыли и других загрязнений. В случае крупных фотоэлектрических станций, при их площади в несколько квадратных километров это может вызвать затруднения, но применение отполированного стекла на современных солнечных батареях решает эту проблему
Эффективность фотоэлектрических элементов падает при их нагреве (в основном это касается систем с концентраторами), поэтому возникает необходимость в установке систем охлаждения, обычно водяных. Также в фотоэлектрических преобразователях третьего и четвёртого поколений используют для охлаждения преобразование теплового излучения в излучение наиболее согласованное с поглощающим материалом фотоэлектрического элемента (так называемое up-conversion), что одновременно повышает КПД.
Через 30 лет эксплуатации эффективность фотоэлектрических элементов начинает снижаться. Отработавшие своё фотоэлементы, хотя и незначительная их часть, в основном специального назначения, содержат компонент (кадмий), который недопустимо выбрасывать на свалку. Нужно дополнительное расширение индустрии по их утилизации
В последнее время активно развивается производство тонкоплёночных фотоэлементов, в составе которых содержится всего около 1 % кремния, по отношению к массе подложки на которую наносятся тонкие плёнки. Из-за малого расхода материалов на поглощающий слой, здесь кремния, тонкоплёночные кремниевые фотоэлементы дешевле в производстве, но пока имеют меньшую эффективность и неустранимую деградацию характеристик во времени. Кроме того, развивается производство тонкоплёночных фотоэлементов на других полупроводниковых материалах, в частности CIS и CIGS, достойных конкурентов кремнию. Так, например, в 2005 году компания «Shell» приняла решение сконцентрироваться на производстве тонкоплёночных элементов, и продала свой бизнес по производству монокристаллических (нетонкоплёночных) кремниевых фотоэлектрических элементов
В 2005 году на тонкоплёночные фотоэлементы приходилось 6 % рынка. В 2006 году тонкоплёночные фотоэлементы занимали 7 % долю рынка. В 2007 году доля тонкоплёночных технологий увеличилась до 8 %. В 2009 году доля тонкоплёночных фотоэлементов выросла до 16,8 %
В 1985 году все установленные мощности мира составляли 21 МВт.
2009 г.
№ |
Страна |
Суммарные мощности фотоэлектрических станций, МВт. |
1 |
Германия |
9779 |
2 |
Испания |
3386 |
3 |
Япония |
2633 |
4 |
США |
1650 |
5 |
Италия |
1186 |
6 |
Ю. Корея |
520 |
7 |
Чехия |
465 |
8 |
Бельгия |
363 |
9 |
Китай |
305 |
10 |
Франция |
272 |
11 |
Индия |
120 |
|
|
|
|
Весь мир |
22893 |
Производство фотоэлементов в мире в 2005 году составляло 1656 МВт.
Крупнейшие производители фотоэлементов в 2009 году[4]:
First Solar — 1100,0 МВт
Suntech — 704,0 МВт
Sharp — 595,0 МВт
Q-Cells — 586,0 МВт
Yingli — 525,3 МВт
JA Solar — 520,0 МВт
Kyocera — 400,0 МВт
Trina Solar — 399,0 МВт
SunPower — 397,0 МВт
Gintech — 368,0 МВт
На начало 2010 года общая мировая мощность фотоэлементной солнечной энергетики составила пока только около 0,1 % общемировой генерации электроэнергии
В 2010 году 2,7 % электроэнергии Испании было получено из солнечной энергии
В 2010 году 2 % электроэнергии Германии было получено из фотоэлектрических установок
В середине 2011 года в фотоэлектрической промышленности Германии было занято более 100 тысяч человек. В солнечной энергетике США работали 93,5 тысяч человек
Сгенерированная на основе солнечного излучения энергия сможет к 2050 году обеспечить 20-25 % потребностей человечества в электричестве и сократит выбросы углекислоты. Как полагают эксперты Международного энергетического агентства (IEA), солнечная энергетика уже через 40 лет при соответствующем уровне распространения передовых технологий будет вырабатывать около 9 тысяч тераватт-часов — или 20-25 % всего необходимого электричества, и это обеспечит сокращение выбросов углекислого газа на 6 млрд тонн ежегодно
2007 год
Монокристаллические кремниевые — 4,30 $/Вт установленной мощности [10][11].
Поликристаллические кремниевые — 4,31 $/Вт установленной мощности.
Тонкоплёночные — 3,0 $/Вт установленной мощности.
Стоимость кристаллических фотоэлементов на 40—50 % состоит из стоимости кремния.
Солнечная энергия широко используется как для нагрева воды, так и для производства электроэнергии. Солнечные коллекторы производятся из доступных материалов: сталь, медь, алюминий и т. д., то есть без применения дефицитного и дорогого кремния. Это позволяет значительно сократить стоимость оборудования, и произведенной на нём энергии. В настоящее время именно солнечный нагрев воды является самым эффективным способом преобразования солнечной энергии.
В 2001 году стоимость электроэнергии, полученной в солнечных коллекторах составляла $0,09-$0,12 за кВт·ч. Департамент Энергетики США прогнозирует, что стоимость электроэнергии, производимой солнечными концентраторами снизится до $0,04-$0,05 к 2015—2020 г.
В 2007 году в Алжире началось строительство гибридных электростанций. В дневное время суток электроэнергия производится параболическими концентраторами, а ночью из природного газа.
На начало 2010 года общая мировая мощность солнечной термальной энергетики (концентраторных солнечных станций) достигла одного гигаватта
Солнечные батареи от Boeing-Spectrolab установили мировой рекорд по эффективности (40.7%)2006?
Эффективность теор. 70%, предполагаемая практ. До 50%???
Nitol Solar - международная вертикально интегрированная компания, приоритетным направлением деятельности компании является создание высокотехнологичных мощностей и организация производства продукции для нужд солнечной энергетики.
инженерное сооружение, служащее преобразованию солнечной радиации в электрическую энергию. Способы преобразования солнечной радиации различны и зависят от конструкции электростанции.
Данные электростанции основаны на принципе получения водяного пара с использованием солнечной радиации. В центре станции стоит башня высотой от 18 до 24 метров (в зависимости от мощности и некоторых других параметров высота может быть больше либо меньше), на вершине которой находится резервуар с водой. Этот резервуар покрашен в чёрный цвет для поглощения теплового излучения. Также в этой башне находится насосная группа, доставляющая пар на турбогенератор, который находится вне башни. По кругу от башни на некотором расстоянии располагаются гелиостаты. Гелиостат — зеркало площадью в несколько квадратных метров, закреплённое на опоре и подключённое к общей системе позиционирования. То есть, в зависимости от положения солнца, зеркало будет менять свою ориентацию в пространстве. Основная и самая трудная задача - это позиционирование всех зеркал станции так, чтобы в любой момент времени все отраженные лучи от них попали на резервуар. В ясную солнечную погоду температура в резервуаре может достигать 700 градусов. Такие температурные параметры используются на большинстве традиционных тепловых электростанций, поэтому для получения энергии используются стандартные турбины. Фактически на станциях такого типа можно получить сравнительно большой КПД (около 20 %) и высокие мощности.
В Крыму была построена СЭС такого же типа в Щёлкино как резервный источник электричества для планируемой там АЭС. Но по большому счету, эта станция была экспериментальной: ее мощность 5 МВт. При эксплуатации этой станции было выявлено множество трудностей. Одна из них — система позиционирования отражателей практически полностью (95 %) расходовала энергию, вырабатываемую станцией . Также возникали трудности с очисткой зеркал. Вскоре эта станция прекратила своё существование и была разворована
Проект первой в СССР Крымской СЭС (солнечной электростанции) был создан в начале 80-х в рижском отделении института «Атомтеплоэлектропроект» при участии тринадцати других проектно-конструкторских организаций Министерства энергетики и электрификации СССР. Научное руководство осуществлял Энергетический институт имени Г.М. Кржижановского Академии наук СССР.
СЭС-5 была задумана как экспериментальная станция, основное назначение которой — выяснить особенности работы специфического оборудования, применяемого в работе электростанции, накопить опыт эксплуатации всех систем станции, выявить недостатки схемы и отдельных элементов оборудования и получить возможность в процессе освоения СЭС-5 реконструировать несовершенные системы.
Концепция конструкции башенного типа, примененная в СЭС-5, впервые была выдвинута институт
В
центре большого поля, диаметром 500 метров
была расположена башня высотой 89 метров,
в верхней части которой находился
паровой котел. Башня была окружена полем
из гелиостатов – зеркальных отражателей,
каждый площадью 25 кв.м. Каждый гелиостат,
а всего их было 1600, был оборудован
электрическими приводами зенитного и
азимутальногo вращения. Управляющая
работой ЭВМ при помощи электроприводов
корректировала положение гелиостатов
таким образом, чтобы в любой момент
времени все отраженные солнечные лучи
были направлены строго на котел.ом им.
Г.М.Кржижановского еще в 50-е годы. После
нагрева воды в котле при помощи зеркал,
сфокусировавших на нем солнечное
излучение, пар из котла подавался на
турбину, которая вращала ротор генератора.
Так солнечная энергия превращалась в
электрическую.Турбина и генератор
находились на земле, в специальном
помещении. Еще одной частью электростанции
был теплоаккумулятор, состоящий из двух
емкостей для высокотемпературной
пароводяной смеси, объемом по 1000
кубометров каждый. В случае плохой
погоды, когда Солнце скрыто за облаками
или же ночью, он способен был обеспечить
работу станции на стандартной мощности
в течении 3-4 часов, плюс еще около 10 часов
в режиме пониженной мощности (примерно
50%).
Проектная мощность станции
составляла 5 МВт. Такая же мощность была
у первой советской атомной электростанции.
Для справки. Полная установленная мощность всех солнечных электростанций мира на тот момент составляла 21 МВт.
Первое пробное включение генератора станции СЭС-5 в сеть состоялось в сентябре 1985 г. В тот момент функционировало 420 гелиостатов.
Полностью станция вступила в строй в 1986 году. Общая стоимость строительства СЭС-5 составила около 29 млн. рублей.
За время до остановки в начале 90-х солнечная электростанция выработала около 2 млн кВт-ч электроэнергии.
Уже после начала работы СЭС-5, в Минэнерго был разработан проект строительства комбинированной промышленной солнечно-топливной электростанции мощностью 320 МВт. Место для нее было выбрано в Узбекистане, в Каршинской степи, вблизи города Талимарджана. Такая электростанция получалась гораздо экономичнее, чем обычные ТЭЦ.
Но к сожалению инженеры и конструкторы в 1986 году никак не могли догадываться, что СЭС-5 станет последней солнечной электростанцией Союза. После его распада, проработав пару лет экспериментальная станция была закрыта за ненадобностью и отсутствием финансирования, зеркала гелиостатов и парогенератор сданы в металлолом. Единственное, что осталось – это руины башни да заброшенный гигантский “круг” зеркального поля.
1) Крымская СЭС была построена рядом с Крымской АЭС (так и незаконченной). Возле неё на восточной части берега Акташского водохранилища расположена также экспериментальная ветровая электростанция ЮжЭнерго, состоящая из 15 ветроагрегатов мощностью по 100 кВт каждая. Неподалеку от неё находятся 8 старых неработающих экспериментальных ветряков Восточно-Крымской Ветроэлектростанции. Получился просто циклопический монумент варварству и упадку.
Данный тип СЭС использует принцип получения электроэнергии, схожий с таковым у Башенных СЭС, но есть отличия в конструкции самой станции. Станция состоит из отдельных модулей. Модуль состоит из опоры, на которую крепится ферменная конструкция приемника и отражателя. Приемник находится на некотором удалении от отражателя, и в нем концентрируются отраженные лучи солнца. Отражатель состоит из зеркал в форме тарелок (отсюда название), радиально расположенных на ферме. Диаметры этих зеркал достигают 2 метров, а количество зеркал - нескольких десятков (в зависимости от мощности модуля). Такие станции могут состоять как из одного модуля (автономные), так и из нескольких десятков (работа параллельно с сетью).
СЭС этого типа в настоящее время очень распространены, так как в общем случае СЭС состоит из большого числа отдельных модулей (фотобатарей) различной мощности и выходных параметров. Данные СЭС широко применяются для энергообеспечения как малых, так и крупных объектов (частные коттеджи, пансионаты, санатории, промышленные здания и т. д.). Устанавливаться фотобатареи могут практически везде, начиная от кровли и фасада здания и заканчивая специально выделенными территориями. Установленные мощности тоже колеблются в широком диапазоне, начиная от снабжения отдельных насосов, заканчивая электроснабжением небольшого посёлка.
Принцип работы данных СЭС заключается в нагревании теплоносителя до параметров, пригодных к использованию в турбогенераторе.
Конструкция СЭС: на ферменной конструкции устанавливается параболическое зеркало большой длины, а в фокусе параболы устанавливается трубка, по которой течет теплоноситель (чаще всего масло). Пройдя весь путь, теплоноситель разогревается и в теплообменных аппаратах отдаёт теплоту воде, которая превращается в пар и поступает на турбогенератор.
Представляют собой СЭС с параболическими концентраторами, у которых в фокусе установлен двигатель Стирлинга. Существуют конструкции двигателей Стирлинга, которые непосредственно преобразуют колебания поршня в электрическую энергию, без использования кривошипно-шатунного механизма. Это позволяет достичь высокой эффективности преобразования энергии. Эффективность таких электростанций достигает 31,25%[2]. В качестве рабочего тела используется водород или гелий.
Часто на СЭС различных типов дополнительно устанавливают теплообменные аппараты для получения горячей воды, которая используется как для технических нужд, так и для горячего водоснабжения и отопления. В этом и состоит суть комбинированных СЭС. Также на одной территории возможна параллельная установка концентраторов и фотобатарей, что тоже считается комбинированной СЭС
Сарния, Канада пиковая мощность 97 МВТ, 1 млн. солнечных модулей, 120 000 МВТ ч год
Солнечный водонагреватель — разновидность солнечного коллектора. Предназначен для производства горячей воды путём поглощения солнечного излучения, преобразования его в тепло, аккумуляции и передачи потребителю.
Наибольшую популярность получили нагреватели с плоским коллектором, или панельные. В солнцеизбыточных регионах (Турция, Южные районы КНР, Саудовская Аравия и т. д.) в качестве абсорбера в таких коллекторах используется пластина из алюминия или стали. Значения КПД таких коллекторов невелико, что компенсируется высокими (избыточными) величинами солнечной облученности поверхности в этих регионах.
Для величин солнечной облученности (инсоляции) даже южных регионов России требуются коллекторы с пластиной из меди со специальным покрытием. Из-за высокой теплопроводности меди удельные значения теплопередачи энергии теплоносителю и общий КПД значительно выше
Наиболее простым решением для солнечного теплоснабжения являются пластиковые солнечные коллекторы. Изготавливаются путем штамповки из полиэтилена высокой плотности (ПЭВП). Такие коллекторы как правило не имеют дополнительной теплоизоляции и применяются для нагрева воды в летний период. Производительность пластиковых коллекторов достаточно сильно зависит от скорости ветра. Низкое гидравлическое сопротивление позволяет подключать контур коллекторов данного типа напрямую в систему циркуляции воды.
Солнечные водонагреватели можно встретить на крышах многих новых домов в китайской провинции Хубэй
Солнечные водонагреватели устанавливаются на крыше зданий под углом к горизонту, равным географической широте местности.
Кроме того, группы нагревателей устанавливаются на открытых пространствах, например, над парковками для автомобилей, но как можно ближе к потребителю (зданию).
В связи с тем, что солнечный нагреватель невозможно выключить, в периоды максимального солнечного облучения и малого водоразбора температура (температура застоя или stagnation temperature) в нем может достигать, в зависимости от типа, 200 °C (плоские системы) и 300 °C (вакуумные).
В связи с этим в качестве трубной обвязки водонагревателей нельзя использовать пластиковые (полимерные) трубы и стальные трубы с цинковым покрытием. Следует применять трубопроводы из меди или нержавеющей стали.
Также необходимо предусмотреть теплоизоляцию первого (горячего) контура трубной обвязки водонагревателей для предупреждения ожогов и возгораний, причем материал теплоизоляции и крепежа должен соответствовать указанным температурным режимам.
На корпусах коллекторов промышленного изготовления указывается точная температура застоя для данного модельного ряда.
Срок службы коллекторов — не менее 15 лет.
Есть попытки установки коллекторов на стенах домов, почти в вертикальном положении. В этом случае, особенно в высоких широтах, эффективность коллектора выше в зимние месяцы, а в летние — ниже. Есть и другой довод в пользу такой установки: коллектор удобнее обслуживать, на нём меньше собирается пыли, его легче мыть, меньше риск повреждения при граде. К тому же, такой коллектор располагается довольно низко относительно бака с нагреваемой водой, скорость конвекции существенно увеличивается и в активной системе нет надобности. Установка коллектора на стену уменьшает теплопотери дома (квартиры), что снижает потребность в энергии для отопл Мировой лидер по производству и применению — Китай. В 2007 году Китае солнечными водонагревателями пользовались около 40 миллионов семьей общей численностью в 150 миллионов человек. К 2009 году суммарные площади установленных солнечных водонагревателей выросли до 140 млн м². Этого достаточно для снабжения горячей водой примерно 60 млн домохозяйств[2]. К 2020 году 300 миллионов м² помещений в Китае будет оборудовано солнечными водонагревателями.
Также очень широко применяется водонагреватели в Израиле, где 95 % квартир оснащены данным оборудованием. Это обусловлено законом, принятым в 1976 году и обязывающим строить жильё со встроенными солнечными водонагревателями. Исключение составляют некоторые высотные дома ( более 24 этажей ) , где площадь крыши недостаточна для размещения солнечных коллекторов достаточных для всех потребителей здания . Такое широкое применение солнечных водонагревателей экономит около 4 % всей электроэнергии, производимой в стране.
Солнечный коллектор — устройство для сбора тепловой энергии Солнца, переносимой видимым светом и ближним инфракрасным излучением. В отличие от солнечных батарей, производящих непосредственно электричество, солнечный коллектор производит нагрев материала-теплоносителя.
Плоский солнечный коллектор
Плоский коллектор состоит из элемента, поглощающего солнечное излучение, прозрачного покрытия и термоизолирующего слоя. Поглощающий элемент называется абсорбером; он связан с теплопроводящей системой. Прозрачный элемент (стекло) обычно выполняется из закалённого стекла с пониженным содержанием металлов.
При отсутствии разбора тепла (застое) плоские коллекторы способны нагреть воду до 190—200 °C.
Чем больше падающей энергии передаётся теплоносителю, протекающему в коллекторе, тем выше его эффективность. Повысить её можно, применяя специальные оптические покрытия, не излучающие тепло в инфракрасном спектре. Стандартным решением повышения эффективности коллектора стало применение абсорбера из листовой меди из-за её высокой теплопроводности. (можно оспорить такое "распространенное" утверждение, см. [1], поскольку применение меди против алюминия дает выигрыш 4% (хотя теплопроводность алюминия вдвое меньше, что означает значительное превышение "запаса мощности" по теплопередаче), что незначительно в сравнении с ценой)
Возможно повышение температур теплоносителя вплоть до 250—300 °C в режиме ограничения отбора тепла. Добиться этого можно за счёт уменьшения тепловых потерь в результате использования многослойного стеклянного покрытия, герметизации или создания в коллекторах вакуума.
Фактически солнечная тепловая труба имеет устройство схожее с бытовыми термосами. Только внешняя часть трубы прозрачна, а на внутренней трубке нанесено высокоселективное покрытие улавливающее солнечную энергию. между внешней и внутренней стеклянной трубкой находится вакуум. Именно вакуумная прослойка дает возможность сохранить около 95% улавливаемой тепловой энергии.
Кроме того, в вакуумных солнечных коллекторах нашли применение тепловые трубки, выполняющие роль проводника тепла. При облучении установки солнечным светом, жидкость, находящаяся в нижней части трубки, нагреваясь превращается в пар. Пары поднимаются в верхнюю часть трубки (конденсатор), где конденсируясь передают тепло коллектору. Использование данной схемы позволяет достичь большего КПД (по сравнению с плоскими коллекторами) при работе в условиях низких температур и слабой освещенности.
Современные бытовые солнечные коллекторы способны нагревать воду вплоть до температуры кипения даже при отрицательной окружающей температуре.
Повышение эксплуатационных температур до 120—250 °C возможно путём введения в солнечные коллекторы концентраторов с помощью параболоцилиндрических отражателей, проложенных под поглощающими элементами. Для получения более высоких эксплуатационных температур требуются устройства слежения за солнцем.
В 2010 году во всём мире работало 1170 МВт. солнечных термальных электростанций. Из них в Испании 582 МВт. и в США 507 МВт. Планируется строительство 17,54 ГВт. солнечных термальных электростанций. Из них в США 8670 МВт., в Испании 4460 МВ., в Китае 2500 МВт
Распределённое производство энергии (англ. Distributed power generation) — концепция распределённых энергетических ресурсов подразумевает наличие множества потребителей, которые производят тепловую и электрическую энергию для собственных нужд, направляя их излишки в общую сеть (электрическую или тепловую).
Энергию ветра относят к возобновляемым видам энергии, так как она является следствием деятельности солнца. Ветроэнергетика является бурно развивающейся отраслью, так в конце 2010 года общая установленная мощность всех ветрогенераторов составила 196,6 гигаватт[1]. В том же году количество электрической энергии, произведённой всеми ветрогенераторами мира, составило 430 тераватт-часов (2,5 % всей произведённой человечеством электрической энергии).[2][3] Некоторые страны особенно интенсивно развивают ветроэнергетику, в частности, на 2009 год в Дании с помощью ветрогенераторов производится 20 % всего электричества, в Португалии — 16 %, в Ирландии — 14 %,[4], в Испании — 13 % и в Германии — 8 %.[5] В мае 2009 года 80 стран мира использовали ветроэнергетику на коммерческой основе
Ветряные мельницы, производящие электричество, были изобретены в 19-м веке в Дании. Там в 1890-м году была построена первая ветроэлектростанция, а к 1908-му году насчитывалось уже 72 станции мощностью от 5 до 25 кВт. Крупнейшие из них имели высоту башни 24 метра и четырёхлопастные роторы диаметром 23 метра. Предшественница современных ветроэлектростанций с горизонтальной осью имела мощность 100 кВт и была построена в 1931 году в Ялте. Она имела башню высотой 30 метров. К 1941-му году единичная мощность ветроэлектростанций достигла 1,25 МВт. В период с 1940-х по 1970-е годы ветроэнергетика переживает период упадка в связи с интенсивным развитием передающих и распределительных сетей, дававших независимое от погоды энергоснабжение за умеренные деньги. Возрождение интереса к ветроэнергетике началось в 1980-х, когда в Калифорнии начали предоставляться налоговые льготы для производителей электроэнергии из ветра
Современные методы генерации электроэнергии из энергии ветра Мощность ветрогенератора зависит от площади, ометаемой лопастями генератора, и высоты над поверхностью. Например, турбины мощностью 3 МВт (V90) производства датской фирмы Vestas имеют общую высоту 115 метров, высоту башни 70 метров и диаметр лопастей 90 метров.
Воздушные потоки у поверхности Земли/моря являются ламинарными — нижележащие слои тормозят расположенные выше. Этот эффект заметен до высоты 1 км, но резко снижается уже на высотах больше 100 метров.[10] Высота расположения генератора выше этого пограничного слоя одновременно позволяет увеличить диаметр лопастей и освобождает площади на земле для другой деятельности. Современные генераторы (2010 год) уже вышли на этот рубеж, и их количество резко растёт в мире.[11] Ветрогенератор начинает производить ток при ветре 3 м/с и отключается при ветре более 25 м/с. Максимальная мощность достигается при ветре 15 м/с. Отдаваемая мощность пропорциональна третьей степени скорости ветра: при увеличении ветра вдвое, от 5 м/с до 10 м/с, мощность увеличивается в восемь раз.
Наибольшее распространение в мире получила конструкция ветрогенератора с тремя лопастями и горизонтальной осью вращения, хотя кое-где ещё встречаются и двухлопастные. Наиболее эффективной конструкцией для территорий с малой скоростью ветровых потоков признаны ветрогенераторы с вертикальной осью вращения, т.н. роторные, или карусельного типа. Сейчас все больше производителей переходят на производство таких установок, так как далеко не все потребители живут на побережьях, а скорость континентальных ветров обычно находится в диапазоне от 3 до 12 м/с. В таком ветрорежиме эффективность вертикальной установки намного выше. Стоит отметить, что у вертикальных ветрогенераторов есть еще несколько существенных преимуществ: они практически бесшумны, и не требуют совершенно никакого обслуживания, при сроке службы более 20 лет! Системы торможения, разработанные в последние годы, гарантирует стабильную работу даже при периодических шквальных порывах до 60 м/с.
Наиболее перспективными местами для производства энергии из ветра считаются прибрежные зоны. Но стоимость инвестиций по сравнению с сушей выше в 1,5 — 2 раза. В море, на расстоянии 10—12 км от берега (а иногда и дальше), строятся офшорные ветряные электростанции. Башни ветрогенераторов устанавливают на фундаменты из свай, забитых на глубину до 30 метров.
Могут использоваться и другие типы подводных фундаментов, а также плавающие основания. Первый прототип плавающей ветряной турбины построен компанией H Technologies BV в декабре 2007 года. Ветрогенератор мощностью 80 кВт установлен на плавающей платформе в 10,6 морских милях от берега Южной Италии на участке моря глубиной 108 метров.
5 июня 2009 года компании Siemens AG и норвежская Statoil объявили об установке первой в мире коммерческой плавающей ветроэнергетической турбины мощностью 2,3 МВт, производства Siemens Renewable Energy.
В 2010 году суммарные мощности ветряной энергетики выросли во всём мире до 196,6 ГВт. Во всём мире в 2008 году в индустрии ветроэнергетики были заняты более 400 тысяч человек. В 2008 году мировой рынок оборудования для ветроэнергетики вырос до 36,5 миллиардов евро, или около 46,8 миллиардов американских долларов
В 2010 году в Европе было сконцентрировано 44 % установленных ветряных электростанций, в Азии — 31 %, в Северной Америке — 22 %.
Страна |
2005 г., МВт. |
2006 г., МВт. |
2007 г., МВт. |
2008 г. МВт. |
2009 г. МВт. |
2010 г. МВт. |
|
1260 |
2405 |
6050 |
12210 |
25104 |
41800 |
|
|
9149 |
11603 |
16818 |
25170 |
35159 |
40200 |
|
|
18428 |
20622 |
22247 |
23903 |
25777 |
27214 |
|
|
10028 |
11615 |
15145 |
16754 |
19149 |
20676 |
|
|
4430 |
6270 |
7580 |
9645 |
10833 |
13064 |
|
|
1718 |
2123 |
2726 |
3736 |
4850 |
5797 |
|
|
757 |
1567 |
2454 |
3404 |
4492 |
5660 |
|
|
1353 |
1962 |
2389 |
3241 |
4051 |
5203 |
|
|
683 |
1451 |
1846 |
2369 |
3319 |
4008 |
|
|
3122 |
3136 |
3125 |
3180 |
3482 |
3752 |
|
|
1022 |
1716 |
2150 |
2862 |
3535 |
3702 |
|
|
1040 |
1394 |
1538 |
1880 |
2056 |
2304 |
|
|
1224 |
1558 |
1746 |
2225 |
2229 |
2237 |
|
|
510 |
571 |
788 |
1021 |
1560 |
2163 |
|
|
579 |
817 |
817,3 |
1306 |
1668 |
2020 |
|
|
496 |
746 |
805 |
1002 |
1260 |
1748 |
|
|
20,1 |
50 |
146 |
433 |
801 |
1329 |
|
|
573 |
746 |
871 |
985 |
1087 |
1208 |
|
|
73 |
153 |
276 |
472 |
725 |
1107 |
|
|
819 |
965 |
982 |
995 |
995 |
1011 |
|
|
29 |
237 |
247,1 |
341 |
606 |
932 |
|
|
167,4 |
194 |
287 |
384 |
563 |
911 |
|
|
270 |
325 |
333 |
428 |
431 |
441 |
|
|
14 |
36 |
70 |
120 |
177 |
375 |
|
|
17,5 |
61 |
65 |
127 |
201 |
329 |
|
|
29,5 |
54 |
116 |
150 |
192 |
215 |
|
|
82 |
86 |
110 |
140 |
146 |
197 |
|
|
7 |
48 |
50 |
54 |
91 |
154 |
|
|
33 |
32 |
58 |
78 |
142 |
149 |
|
|
77,3 |
86 |
89 |
90 |
94 |
87 |
|
|
14 |
15,5 |
16,5 |
- |
|
|
|
Таблица: Суммарные установленные мощности, МВт по данным WWEA.
1997 |
1998 |
1999 |
2000 |
2001 |
2002 |
2003 |
2004 |
2005 |
2006 |
2007 |
2008 |
2009 |
2010 |
7475 |
9663 |
13696 |
18039 |
24320 |
31164 |
39290 |
47686 |
59004 |
73904 |
93849 |
120791 |
157000 |
196630 |
В 2007 году ветряные электростанции Германии произвели 6,2 % от всей произведённой в Германии электроэнергии.
В 2009 году 19,3 % электроэнергии в Дании вырабатывалось из энергии ветра
В 2009 году в Китае ветряные электростанции вырабатывали около 1,3 % суммарной выработки электроэнергии в стране. В КНР с 2006 года действует закон о возобновляемых источниках энергии. Предполагается, что к 2020 году мощности ветроэнергетики достигнут 80-100 ГВт.
Португалия и Испания в некоторые дни 2007 года из энергии ветра выработали около 20 % электроэнергии. 22 марта 2008 года в Испании из энергии ветра было выработано 40,8 % всей электроэнергии страны
В середине 1920-х годов ЦАГИ разрабатывал ветро-электрические станции и ветряки для сельского хозяйства. Конструкция «крестьянского ветряка» могла быть изготовлена на месте из доступных материалов. Его мощность варьировалась от 3 л.с., 8 л.с. до 45 л.с. Такая установка могла освещать 150 — 200 дворов или приводить в действие мельницу. Для постоянства работы был предусмотрен гидравлический аккумулятор
Технический потенциал ветровой энергии России оценивается свыше 50 000 миллиардов кВт·ч/год. Экономический потенциал составляет примерно 260 млрд кВт·ч/год, то есть около 30 процентов производства электроэнергии всеми электростанциями России.
Энергетические ветровые зоны в России расположены, в основном, на побережье и островах Северного Ледовитого океана от Кольского полуострова до Камчатки, в районах Нижней и Средней Волги и Дона, побережье Каспийского, Охотского, Баренцева, Балтийского, Черного и Азовского морей. Отдельные ветровые зоны расположены в Карелии, на Алтае, в Туве, на Байкале.
Максимальная средняя скорость ветра в этих районах приходится на осенне-зимний период — период наибольшей потребности в электроэнергии и тепле. Около 30 % экономического потенциала ветроэнергетики сосредоточено на Дальнем Востоке, 14 % — в Северном экономическом районе, около 16 % — в Западной и Восточной Сибири.
Суммарная установленная мощность ветровых электростанций в стране на 2009 год составляет 17-18 МВт.
Cамая крупная ветроэлектростанция России (5,1 МВт) расположена в районе посёлка Куликово Зеленоградского района Калининградской области. Куликовская ВЭС состоит из 21 ВЭУ датской компании SЕАS Energi Service A.S. Её среднегодовая выработка составляет около 6 млн кВт·ч.
На Чукотке действует Анадырская ВЭС мощностью 2,5 МВт (10 ветроагрегатов по 250 кВт) среднегодовой выработкой более 3 млн кВт·ч, параллельно станции установлен ДВС, вырабатывающий 30 % энергии установки.
Действует ветропарк в Башкирии, около деревни Тюпкильды Туймазинского района мощностью 2,2 МВт, состоящий из четырёх ветроагрегатов немецкой фирмы Hanseatische AG типа ЕТ 550/41 мощностью по 550 кВт. Cреднегодовая выработка электроэнергии составляет около 2 млн кВт·ч.
В Калмыкии в 20 км от Элисты размещена площадка Калмыцкой ВЭС планировавшейся мощностью в 22 МВт и годовой выработкой 53 млн кВт·ч, на 2006 год на площадке установлена одна установка «Радуга» мощностью 1 МВт и выработкой от 3 до 5 млн кВт·ч.
В республике Коми вблизи Воркуты недостроена Заполярная ВДЭС мощностью 3 МВт. На 2006 действуют 6 установок по 250 кВт общей мощностью 1,5 МВт.
На острове Беринга Командорских островов действует ВЭС мощностью 1,2 МВт.
Успешным примером реализации возможностей ветряных установок в сложных климатических условиях является ветродизельная электростанция на мысе Сеть-Наволок Кольского полуострова мощностью до 0,1 МВт. В 17 километрах от неё в 2009 году начато обследование параметров будущей ВЭС работающей в комплексе с Кислогубской ПЭС.
Существуют проекты на разных стадиях проработки Ленинградской ВЭС 75 МВт Ленинградская область, Ейской ВЭС 72 МВт Краснодарский край, Калининградской морской ВЭС 50 МВт, Морской ВЭС 30 МВт Карелия, Приморской ВЭС 30 МВт Приморский край, Магаданской ВЭС 30 МВт Магаданская область, Чуйской ВЭС 24 МВт Республика Алтай, Усть-Камчатской ВДЭС 16 МВт Камчатская область, Новиковской ВДЭС 10 МВт Республика Коми, Дагестанской ВЭС 6 МВт Дагестан, Анапской ВЭС 5 МВт Краснодарский край, Новороссийской ВЭС 5 МВт Краснодарский край и Валаамской ВЭС 4 МВт Карелия.
Как пример реализации потенциала территорий Азовского моря можно указать Новоазовскую ВЭС, действующей на 2010 год мощностью в 21,8 МВт, установленную на украинском побережье Таганрогского залива.
В 2003—2005 годах в рамках РАО ЕЭС проведены эксперименты по созданию комплексов на базе ветрогенераторов и двигателей внутреннего сгорания, по программе в посёлке Тикси установлен один агрегат. Все проекты начатые в РАО, связанные с ветроэнергетикой переданы компании РусГидро. В конце 2008 года РусГидро начала поиск перспективных площадок для строительства ветряных электростанций.
Предпринимались попытки серийного выпуска ветроэнергетических установок для индивидуальных потребителей, например водоподъёмный агрегат «Ромашка».
В последние годы увеличение мощностей происходит в основном за счет маломощных индивидуальных энергосистем, объем реализации которых составляет 250 ветроэнергетических установок (мощностью от 1 кВт до 5 кВт).
В 2008 году Европейским Союзом установлена цель: к 2010 году установить ветрогенераторов на 40 тыс. МВт , а к 2020 году — 180 тыс. МВт. Согласно планам Евросоюза общее количество электрической энергии, которые выработают ветряные электростанции, составит 494,7 Тв-ч..
В Китае принят Национальный План Развития. Планируется, что установленные мощности Китая должны вырасти до 5 тыс. МВт к 2010 году и до 30 тыс. МВт к 2020 году. Однако бурное развитие ветроэнергетического сектора позволило Китаю превысить порог в 30 Гвт установленной мощности уже в 2010 году.
Индия к 2012 году увеличит свои ветряные мощности в 2 раза в сравнении с 2008 годом. К 2012 году будет построено новых ветряных электростанций на 6 тысяч МВт.
Япония планирует к 2010 — 2011 году увеличить мощности своих ветряных электростанций до 3000 МВт.
Венесуэла за 5 лет с 2010 года планирует построить ветряных электростанций на 1500 МВт.
Франция планирует к 2020 году построить ветряных электростанций на 25 000 МВт, из них 6 000 МВт — офшорных
Основная часть стоимости ветроэнергии определяется первоначальными расходами на строительство сооружений ВЭУ (cтоимость 1 кВт установленной мощности ВЭУ ~$1000).
Ветряные генераторы в процессе эксплуатации не потребляют ископаемого топлива. Работа ветрогенератора мощностью 1 МВт за 20 лет позволяет сэкономить примерно 29 тыс. тонн угля или 92 тыс. баррелей нефти.
Себестоимость электричества, производимого ветрогенераторами, зависит от скорости ветра
Скорость ветра |
|
7,16 м/c |
4,8 цента/кВт·ч; |
8,08 м/с |
3,6 цента/кВт·ч; |
9,32 м/с |
2,6 цента/кВт·ч. |
Для сравнения: себестоимость электричества, производимого на угольных электростанциях США, 4,5 — 6 цента/кВт·ч. Средняя стоимость электричества в Китае 4 цента/кВт·ч.
При удвоении установленных мощностей ветрогенерации себестоимость производимого электричества падает на 15 %. Ожидается, что себестоимость ещё снизится на 35—40 % к концу 2006 г. В начале 80-х годов стоимость ветряного электричества в США составляла $0,38.
В марте 2006 года Earth Policy Institute (США) сообщил о том, что в двух районах США стоимость ветряной электроэнергии стала ниже стоимости традиционной энергии. Осенью 2005 года из-за роста цен на природный газ и уголь стоимость ветряного электричества стала ниже стоимости электроэнергии, произведённой из традиционных источников. Компании Austin Energy из Техаса и Xcel Energy из Колорадо первыми начали продавать электроэнергию, производимую из ветра, дешевле, чем электроэнергию, производимую из традиционных источников.
В большинстве регионов России среднегодовая скорость ветра не превышает 5 м/с, в связи с чем привычные ветрогенераторы с горизонтальной осью вращения практически не применимы - их стартовая скорость начинается с 3-6 м/с, и получить от их работы существенное количество энергии не удастся. Однако на сегодняшний день все больше производителей ветрогенераторов предлагают т.н.роторные установки, или ветрогенераторы с вертикальной осью вращения. Принципиальное отличие состоит в том, что вертикальному генератору достаточно 1 м/с чтобы начать вырабатывать электричество. Развитие этого направления снимает ограничения по использованию энергии ветра в целях электроснабжения. Наиболее прогрессивная технология - сочетание в одном устройстве генераторов двух видов - вертикального ветрогенератора и ФЭМ (фото-электрические модули) - солнечные панели. Дополняя друг друга, совместно они гарантируют производство достаточного количества электроэнергии на любых территориях и в любых климатических условиях. Достаточных, например, для уличного освещения или питания объектов инженерно-технической инфраструктуры (базовые станции сотовой связи, пункты наблюдения, погодные и метео-станции и так далее).
Ветроэнергетика является нерегулируемым источником энергии. Выработка ветроэлектростанции зависит от силы ветра — фактора, отличающегося большим непостоянством. Соответственно, выдача электроэнергии с ветрогенератора в энергосистему отличается большой неравномерностью как в суточном, так и в недельном, месячном, годовом и многолетнем разрезе. Учитывая, что энергосистема сама имеет неоднородности нагрузки (пики и провалы энергопотребления), регулировать которые ветроэнергетика, естественно, не может, введение значительной доли ветроэнергетики в энергосистему способствует её дестабилизации. Понятно, что ветроэнергетика требует резерва мощности в энергосистеме (например, в виде газотурбинных электростанций), а также механизмов сглаживания неоднородности их выработки (в виде ГЭС или ГАЭС). Данная особенность ветроэнергетики существенно удорожает получаемую от них электроэнергию. Энергосистемы с большой неохотой подключают ветрогенераторы к энергосетям, что привело к появлению законодательных актов, обязующих их это делать.
Проблемы в сетях и диспетчеризации энергосистем из-за нестабильности работы ветрогенераторов начинаются после достижения ими доли в 20-25 % от общей установленной мощности системы. Для России это будет показатель, близкий к 50 тыс. — 55 тыс. МВт.
По данным испанских компаний «Gamesa Eolica» и «WinWind» точность прогнозов выдачи энергии ветростанций при почасовом планировании на рынке «на день вперёд» или спотовом режиме превышает 95 %.
Небольшие единичные ветроустановки могут иметь проблемы с сетевой инфраструктурой, поскольку стоимость линии электропередачи и распределительного устройства для подключения к энергосистеме могут оказаться слишком большими. Проблема частично решается, если ветроустановка подключается к местной сети, где есть энергопотребители. В этом случае используется существующее силовое и распределительное оборудование, а ВЭС создаёт некоторый подпор мощности, снижая мощность, потребляемую местной сетью извне. Трансформаторная подстанция и внешняя линия электропередачи оказываются менее нагруженными, хотя общее потребление мощности может быть выше.
Крупные ветроустановки испытывают значительные проблемы с ремонтом, поскольку замена крупной детали (лопасти, ротора и т. п.) на высоте более 100 метров является сложным и дорогостоящим мероприятием.
В России считается, что применение ветрогенераторов в быту для обеспечения электричеством малоцелесообразно из-за:
Высокой стоимости инвертора ~ 50 % стоимости всей установки (применяется для преобразования переменного или постоянного тока получаемого от ветрогенератора в ~ 220В 50Гц (и синхронизации его по фазе с внешней сетью при работе генератора в параллель))
Высокой стоимости аккумуляторных батарей — около 25 % стоимости установки (используются в качестве источника бесперебойного питания при отсутствии или пропадании внешней сети)
Для обеспечения надёжного электроснабжения к такой установке иногда добавляют дизель-генератор, сравнимый по стоимости со всей установкой.
В настоящее время, несмотря на рост цен на энергоносители, себестоимость электроэнергии не составляет сколько-нибудь значительной величины у основной массы производств по сравнению с другими затратами; ключевыми для потребителя остаются надёжность и стабильность электроснабжения.
Основными факторами, приводящими к удорожанию энергии, получаемой от ветрогенераторов, являются:
Необходимость получения электроэнергии промышленного качества ~ 220В 50 Гц (требуется применение инвертора)
Необходимость автономной работы в течение некоторого времени (требуется применение аккумуляторов)
Необходимость длительной бесперебойной работы потребителей (требуется применение дизель-генератора)
В настоящее время наиболее экономически целесообразно получение с помощью ветрогенераторов не электрической энергии промышленного качества, а постоянного или переменного тока (переменной частоты) с последующим преобразованием его с помощью ТЭНов в тепло, для обогрева жилья и получения горячей воды. Эта схема имеет несколько преимуществ:
Отопление является основным энергопотребителем любого дома в России.
Схема ветрогенератора и управляющей автоматики кардинально упрощается.
Схема автоматики может быть в самом простом случае построена на нескольких тепловых реле.
В качестве аккумулятора энергии можно использовать обычный бойлер с водой для отопления и горячего водоснабжения.
Потребление тепла не так требовательно к качеству и бесперебойности: температуру воздуха в помещении можно поддерживать в широких диапазонах 19—25 °C, а в бойлерах горячего водоснабжения 40—97 °C без ущерба для потребителей.
Ветрогенератор мощностью 1 МВт сокращает ежегодные выбросы в атмосферу 1800 тонн СО2, 9 тонн SO2, 4 тонн оксидов азота
По оценкам Global Wind Energy Council к 2050 году мировая ветроэнергетика позволит сократить ежегодные выбросы СО2 на 1,5 миллиарда тонн
Турбины занимают только 1 % от всей территории ветряной фермы. На 99 % площади фермы возможно заниматься сельским хозяйством или другой деятельностью, что и происходит в таких густонаселённых странах, как Дания, Нидерланды, Германия. Фундамент ветроустановки, занимающий место около 10 м в диаметре, обычно полностью находится под землёй, позволяя расширить сельскохозяйственное использование земли практически до самого основания башни. Земля сдаётся в аренду, что позволяет фермерам получать дополнительный доход. В США стоимость аренды земли под одной турбиной составляет $3000-$5000 в год.
Источник энергии |
Удельный показатель площади земельного
участка, |
404 |
|
Ветер |
800—1335 |
364 |
|
3561 |
|
3642 |
Таблица: Удельная потребность в площади земельного участка для производства 1 млн кВт·ч электроэнергии
Ветроэнергетика Китая — бурно развивающаяся отрасль экономики Китайской народной республики. К концу 2009 года в Китае работало 25777 МВт ветряных электростанций, что составляет 16 % от ветряных мощностей всего мира. Китай вышел на четвёртое место в мире по размеру установленных ветряных электростанций. За 2008 год было построено 6300 МВт новых ветряных электростанций
В 2007 году Китай инвестировал около 16 миллиардов юаней (более $2,0 млрд) в ветряную энергетику. В Китае построено более 60 крупных ветряных электростанций, на которых ведётся обучение специалистов.
В феврале 2005 года Китай принял закон Возобновляемой Энергетики. В 2005 году Китай вырабатывал из энергии ветра 0,17 % электроэнергии, в 2008 году — 1,3 %.
За годы 10-й пятилетки (2000 год—2005 год) ветряная энергетика росла в среднем на 30 % в год — с 350 МВт в 2000 году до 1260 МВт в 2005 году.
Все крупнейшие мировые производители оборудования для ветроэнергетики имеют в Китае свои производства или совместные предприятия. Например, германская компания Nordex в 2007 году занимала 3 % рынка ветряных турбин Китая.
В 2007 году в Китае 40 компаний производили оборудование для ветроэнергетики. Их суммарные мощности составляли 8000 МВт. в год. В 2008 году 67 копаний в Китае производили оборудование для ветроэнергетики, из них 27 компаний — государственные. По законам Китая 70 % оборудования любой ветряной электростанции должно иметь китайское происхождение. В конце 2009 года около 90 компаний производили ветряные турбины, более 50 компаний производили лопасти и около 100 компаний производят различные компоненты В 2010 году требование обязательной 70 % доли китайского оборудование было отменено: практически 100 % строящихся в Китае ветряных турбин, имели китайское происхождение
К 2012 году в Китае будет производиться ветрогенераторов суммарной мощностью около 12 000 МВт
Крупнейшие китайские производители оборудования в 2009 году — компании: Sinovel (3510 МВт.), Goldwind (2727 МВт.) и Dongfang Jin (2475 МВт.). Компании Feng (Golden Wind) и Hua Rui планируют начать экспорт ветрогенераторов в 2009 году и 2010 годах.
Крупнейший владелец ветряных электростанций — компания China Longyuan Electric Power Group Corp. В 2006 году компания управляла 32 ветряными электростанциями суммарной мощностью 780 МВт.
Во время 11-й пятилетки Китай собирался построить около 30 крупных ветряных электростанций мощностью по 100 МВт и более. Согласно национальному плану развития, установленные мощности Китая должны вырасти до 30 тыс. МВт к 2020 году. Однако бурное развитие ветроэнергетики в стране позволило пройти этот рубеж уже в 2010 году. В том же году Китай опередил США и стал мировым лидером по установленной мощности ветрогенераторов, превзойдя порог в 40 тыс. мегаватт.
Ветроэнергетика США
США — один из лидеров мировой ветроэнергетики как по размерам имеющихся ветряных электростанций, так и по темпам роста установленных мощностей.
В 2007 году ветряные электростанции США выработали более 48 млрд кВт·ч электроэнергии, что составило примерно 1 % от всей электроэнергии, произведённой в США за 2007 год.
По данным Американской ассоциации ветряной энергетики (AWEA) в 2008 году США вышли на первое место в мире по мощностям построенных ветряных электростанций. В 2008 году в США установленные мощности ветряных электростанций выросли на 50 %. За год было построено 8358 МВт новых ветряных электростанций. На конец 2008 года суммарные мощности ветряных электростанций США составляли 25170 МВт.
Pacific Northwest Laboratory в 2001 году оценила потенциал ветроэнергетики 20 штатов США. Из энергии ветра третьего класса и выше, на доступных землях, 20 штатов могут ежегодно производить до 10 777 млрд кВт·ч электроэнергии в год, что в три раза больше потребления США в 2001 году.
Наибольшим потенциалом обладает штат Северная Дакота, которую называют «Саудовской Аравией энергии ветра».
В 2008 году Департамент энергетики США (DoE) опубликовал исследование: 20 % Wind energy. В исследовании DoE прогнозирует, что к 2030 году США из энергии ветра будут вырабатывать 20 % электроэнергии, производимой в стране
Согласно исследованию, проведённому National Renewable Energy Laboratory (NREL) в 2010 году, потенциал офшорной ветроэнергетики оценивается в 4150 ГВт, тогда как в 2008 году суммарная мощность всей энергетики США составляла 1010 ГВт
ость всей энергетики США составляла 1010 ГВт
Крупнейшие по мощности ветряные фермы США |
|||
Название |
Штат |
Мощность, |
|
Roscoe Wind Farm |
781 |
|
|
Horse Hollow Wind Energy Center |
736 |
|
|
Tehachapi Pass Wind Farm |
690 |
|
|
Capricorn Ridge Wind Farm |
662 |
|
|
San Gorgonio Pass Wind Farm |
619 |
|
|
Fowler Ridge Wind Farm |
600 |
|
|
Sweetwater Wind Farm, |
585 |
|
|
Altamont Pass Wind Farm |
576 |
|
Таблица: Крупнейшие ветроэлектростанции США на май 2008 года
Крупнейшие поставщики ветрогенераторов на рынок США в 2007 году |
||||
Место |
Название |
Страна |
Число |
Общая |
1 |
GE Energy |
США |
1561 |
2342 |
2 |
537 |
953 |
||
3 |
375 |
863 |
||
4 |
242 |
484 |
||
5 |
Mitsubishi Power Systems |
356 |
356 |
|
6 |
97 |
197 |
||
Всего |
3188 |
5244 |
В 2008 году в США было построено 55 новых заводов по производству оборудования для ветроэнергетики. Доля оборудования, произведённого в США, выросла с 30% в 2005 году до 50% в 2008 году[3].
По данным AWEA в 2004 году в США было установлено около 30 МВт малых ветрогенераторов. В 2006 году было продано 6807 малых ветряных турбин. Их суммарная мощность 17 543 кВт. Их суммарная стоимость $56 082 850 (примерно $3200 за кВт мощности).
В 2009 году было продано 20,3 Мвт. малых ветрогенераторов. Суммарные мощности малой ветроэнергетики превысили 100 МВт. В США 95 компаний производили оборудование для малой ветроэнергетики[5].
В 2008 году в ветряной энергетике США было занято 85 тысяч человек. За 2008 год было создано 35 тысяч новых рабочих мест. В строительстве ветряных электростанций заняты около 8 тысяч рабочих[6].
Карта размещения ветряных электростанций ФРГ. 2007 год.
В 2006 году ветроэнергетика Германии произвела 30,5 млрд кВт·ч электроэнергии. Для сравнения: в том же году вся гидроэнергетика Германии произвела 21,6 млрд кВт·ч электроэнергии, что составляет 3,5% от всего потребления электричества в Германии.
В 2006 году выручка германской индустрии ветроэнергетики составила 7,2 миллиарда евро, из них 5,6 миллиардов евро пришлось на стоимость ветряных турбин и компонентов (лопасти, башни и т. д.). По оценкам Германского Института Ветроэнергетики (DEWI) германские производители ветряных турбин и компонентов занимают 37% долю мирового рынка. В 2006 году производство оборудования для ветроэнергетики выросло в Германии примерно на 50%. В 2007 году в ветряной индустрии Германии было занято 80 000 человек, включая смежные отрасли: строительство, проектирование, консультации, продажи, финансы, образование и т. д. На экспорт было отправлено 71% произведённого оборудования и услуг на общую сумму около 3,5 миллиардов евро.
За 2006 год в Германии было построено 1208 новых ветрогенераторов суммарной мощностью 2233 МВт. Прирост составил 23,5% в сравнении с 2005 годом. В 2007 году в Германии было построено 1625 МВт. новых ветряных электростанций. В 2008 году 866 новых ветрогенераторов суммарной мощностью 1665 МВт.
В 2008 году в Германии работали 20301 ветряных турбин суммарной мощностью 23902,77 МВт.
В 2010 году 6,2 % электроэнергии Германии было получено из энергии ветра. Ночью 7 февраля 2011 года ветряные электростанции выработали около 1/3 электроэнергии Германии.
Крупнейшие поставщики ветрогенераторов |
||||
Место |
Название |
Страна |
Доля, % |
|
1 |
61% |
|
||
2 |
31,6% |
|
||
3 |
5,6% |
|
||
4 |
Fuhlander |
4,8% |
|
|
5 |
2,2% |
|
||
Всего |
1665 МВт. |
|
Единственное важное требование для ВЭС — высокий среднегодовой уровень ветра. Мощность современных ветрогенераторов достигает 6 МВт.
Мощность ветрогенератора зависит от скорости ветра и ометаемой площади
Департамент Энергетики США (DoE) финансирует разработки и испытания ветрогенераторов мощностью 5—8 МВт как для наземного использования, так и для установки в море.
Норвежская компания StatoilHydro и немецкий концерн Siemens AG разработали плавающие ветрогенераторы для морских станций большой глубины. StatoilHydro построила демонстрационную версию мощностью 2,3 МВт в июне 2009 года. Турбина под названием Hywind, разработанная ] Siemens Renewable Energy, весит 5 300 тонн при высоте 65 метров. Располагается она в 10 километрах от острова Кармой, неподалеку от юго-западного берега Норвегии. Компания планирует в будущем довести мощность турбины до 5 МВт, а диаметр ротора — до 120 метров. Аналогичные разработки ведутся в США.
Компания Magenn разработала аппарат легче воздуха с установленным на нём ветрогенератором. Аппарат поднимается на высоту 120—300 метров. Нет необходимости строить башню и занимать землю. Аппарат работает в диапазоне скоростей ветра от 1 м/с до 28 м/с. Аппарат может перемещаться в ветряные регионы или быстро устанавливаться в местах катастроф.
Компания Windrotor предлагает новую очень эффективную конструкцию ротора мощной турбины, позволяющую значительно увеличить его размеры и коэффициент использования энергии ветра. Предполагается, что эта конструкция станет новым поколением роторов ветровых турбин.
Департамент Энергетики США (DoE)в конце 2007 года объявил о готовности финансирования особо малых (до 5 кВт) ветрогенераторов персонального использования.
В мае 2009 года в Германии был запущен в эксплуатацию первый ветрогенератор, установленный на гибридной башне компании Advanced Tower Systems (ATS). Нижняя часть башни высотой 76,5 метров построена из железобетона. Верхняя часть высотой 55 метров построена из стали. Общая высота ветрогенератора (вместе с лопастями) составляет 180 метров. Увеличение высоты башни позволит увеличить выработку электроэнерии до 20 %
В конце 2010 года испанские компании Gamesa, Iberdrola, Acciona Alstom Wind, Técnicas Reunidas, Ingeteam, Ingeciber, Imatia, Tecnitest Ingenieros и DIgSILENT Ibérica создали группу для совместной разработки ветрогенератора мощностью 15,0 МВт
Компания Bloomberg New Energy Finance производит расчёт ценового индекса ветрогенераторов (Wind Turbine Price Index). С 2008 года до 2010 года средние цены на ветрогенераторы снизились на 15 %. В 2008 году средняя цена ветрогенератора составляла €1,22 млн за 1 МВт мощности. В августе 2010 года средняя цена одного МВт ветрогенератора составляла €1,04 млн
К малой ветроэнергетике относятся установки мощностью менее 100 кВт. Установки мощностью менее 1 кВт относятся к микро-ветряной энергетике. Они применяются на яхтах, с/х фермах для водоснабжения и т. д.
Малые ветрогенераторы могут работать автономно, то есть без подключения к общей электрической сети.
Считается, что применение малых ветрогенераторов в быту малоцелесообразно из-за:
Высокой стоимости инвертора ~ 50 % стоимости всей установки (применяется для преобразования переменного или постоянного тока получаемого от ветрогенератора в ~ 220В 50Гц (и синхронизации его по фазе с внешней сетью при работе генератора в параллель))
Высокой стоимости аккумуляторных батарей ~ 25 % стоимости установки (используется в качестве источника бесперебойного питания при отсутствии или пропадании внешней сети)
Для обеспечения надёжного электроснабжения к такой установке иногда добавляют дизель-генератор, сравнимый по стоимости со всей установкой.
В настоящее время, несмотря на рост цен на энергоносители, себестоимость электроэнергии не составляет сколько-нибудь значительную величину у основной массы производств на фоне других затрат. Ключевым для потребителя остаётся надёжность и стабильность электроснабжения.
Основными факторами приводящими к удорожанию энергии получаемой от ветрогенераторов являются:
Необходимость получения электроэнергии промышленного качества ~ 220В 50 Гц (применяется инвертор)
Необходимость автономной работы в течение некоторого времени (применяются аккумуляторы)
Необходимость длительной бесперебойной работы потребителей (применяется дизель-генератор)
В настоящее время наиболее экономически целесообразно получение с помощью ветрогенераторов не электрической энергии промышленного качества, а постоянного или переменного тока (переменной частоты) с последующим преобразованием его с помощью ТЭНов в тепло, для обогрева жилья и получения горячей воды. Эта схема имеет несколько преимуществ:
Отопление является основным энергопотребителем любого дома в России.
Схема ветрогенератора и управляющей автоматики кардинально упрощается.
Схема автоматики может быть в самом простом случае построена на нескольких тепловых реле.
В качестве аккумулятора энергии можно использовать обычный бойлер с водой для отопления и горячего водоснабжения.
Потребление тепла не так требовательно к качеству и бесперебойности, температуру воздуха в помещении можно поддерживать в широком диапазоне: 19—25°С; в бойлерах горячего водоснабжения: 40—97°С, без ущерба для потребителей.
По данным Американской Ассоциации Ветряной Энергетики (AWEA) в США в 2006 г. было продано 6807 малых ветряных турбин. Их суммарная мощность 17 543 кВт. Их суммарная стоимость $56 082 850 (примерно $3200 за кВт мощности). В остальном мире в 2006 г. были проданы 9502 малых турбины (без учёта США), их суммарная мощность 19 483 кВт.
Наиболее перспективными регионами для развития малой ветроэнергетики считаются регионы со стоимостью электроэнергии более $0,1 за кВт·ч. Себестоимость электроэнергии, производимой малыми ветрогенераторами в 2006 г. в США составляла $0,10—$0,11 за кВт·ч. AWEA ожидает, что в ближайшие 5 лет себестоимость снизится до $0,07 за кВт·ч.
AWEA прогнозирует, что к 2020 году суммарная мощность малой ветряной энергетики США вырастет до 50 тыс. МВт, что составит около 3 % от суммарных мощностей страны. Ветряные турбины будут установлены в 15 млн домах и на 1 млн малых предприятий. В отрасли малой ветроэнергетики будут заняты 10 тыс. человек. Они ежегодно будут производить продукции и услуг на сумму более чем $1 млрд.